Search result: Catalogue data in Autumn Semester 2024
Agricultural Sciences Master ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
751-4104-00L | Alternative Crops | W+ | 2 credits | 2V | A. Walter, K. Berger Büter | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Few crops dominate the crop rotations worldwide. Following the goal of an increased agricultural biodiversity, species such as buckwheat but also medicinal plants might become more important in future. The biology, physiology, stress tolerance and central aspects of the value-added chain of the above-mentioned and of other alternative crops will be depicted. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | During this course, students learn to assess the potential of different minor or alternative crops compared to the dominant major crops based on their biological and agronomical features. Each student will assess and present a specific alternative crop of his or her choice based on information from scientific articles and Wikipedia. Wikipedia-entries will be generated. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
751-3603-00L | Current Challenges in Plant Breeding ![]() | W+ | 2 credits | 2G | B. Studer, A. Hund, R. Kölliker | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The seminar 'Current Challenges in Plant Breeding' aims to bring together national and international experts in plant breeding to discuss current activities, latest achievements and future prospective of a selected topic/area in plant breeding. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The educational objectives cover thematic, methodic as well as social and personal competencies: Thematic/methodic competencies: - Deepening of scientific knowledge in plant breeding - Critical evaluation of current challenges and new concepts in plant breeding - Promotion of collaboration and Master thesis projects with practical plant breeders Social/personal competencies: - Independent literature research to get familiar with the selected topic - Critical evaluation and consolidation of the acquired knowledge in an interdisciplinary team - Establishment of a scientific presentation in an interdisciplinary team - Presentation and discussion of the teamwork outcome - Establishing contacts and strengthening the network to national and international plant breeders and scientist | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Interesting topics related to plant breeding will be selected in close collaboration with the working group for plant breeding of the Swiss Society of Agronomy (SSA). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | None | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Peer-reviewed research articles, selected according to the topic. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Participation in the BSc course 'Pflanzenzüchtung' is strongly recommended, a completed course in 'Molecular Plant Breeding' is advantageous. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
751-4704-00L | Weed Science | W+ | 3 credits | 2G | B. Streit, U. J. Haas | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Modern weed management comprises competent knowledge of weed biology, weed ecology, population dynamics, crop-weed-interactions and different measures to control weeds. Weeds are understood to be rather part of a habitat or a cropping system than just unwanted plants in crops. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | At the end of the course the students are qualified to develop sustainable solutions for weed problems in agricultural and natural habitats. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Modern weed management comprises competent knowledge of weed biology, weed ecology, population dynamics, crop-weed-interactions and different measures to control weeds. Weeds are understood to be rather part of a habitat or a cropping system than just unwanted plants in crops. Accordingly, this knowledge will be imparted during the course and will be required to understand the mechanisms of integrated weed control strategies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
751-5121-00L | Insect Ecology ![]() | W+ | 2 credits | 2V | C. De Moraes, N. Stanczyk | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This is an introductory class on insect ecology. During the course you will learn about insect interactions with, and adaptations to, their environment and other organisms, and the importance of insect roles in our ecosystems. This course includes in-person lectures, small group discussions and outside readings. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The aim of the course is for you to be able to describe examples of insect interactions and evaluate their impact on broader ecosystems. Important topics include: insect-plant interactions, chemical ecology, predator-prey interactions, vectors of disease, social insects, mutual and parasitic interactions, and examining insect ecology in an evolutionary context. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Provided to students through Moodle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Selected required readings (peer reviewed literature). Optional recommended readings with additional information. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
751-4811-00L | Alien Organisms in Agriculture ![]() | W+ | 2 credits | 2G | J. Collatz, M. Meissle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course focuses on alien organisms in agriculture as well as the scientific assessment and regulatory management of their effects on the environment and agricultural production. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students will understand the consequences arising from the unintentional or deliberate introduction of alien organisms into agricultural systems. They will be able to understand the concept of environmental risk assessment and be able to evaluate risk management options. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Alien organisms in agriculture is a topic that receives an increasing awareness among farmers, agricultural scientists, regulators and the general public. Students of this course will learn about the nature of alien organisms such as invasive species, biocontrol organisms and genetically modified organisms. With a particular focus on arthropods, plants and their interactions we will look at the potential threats the novel organisms pose, the benefits they provide and how both of these effects can be scientifically assessed. Students will learn how the topic of alien organisms in agriculture is intrinsically tied to policy making and regulation and get to know current examples and future challenges in research. In the last part of the course students will be able to apply the acquired knowledge in a practical exercise (case study). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Material will be distributed during the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | A part of the course will take place in flipped classroom mode, i.e. some lectures will be available as podcasts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-0263-01L | Seminar in Evolutionary Ecology of Infectious Diseases ![]() ![]() | W+ | 3 credits | 2G | R. R. Regös, S. Bonhoeffer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students of this course will discuss current topics from the field of infectious disease biology. From a list of publications, each student chooses some themes that he/she is going to explain and discuss with all other participants and under supervision. The actual topics will change from year to year corresponding to the progress and new results occuring in the field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This is an advanced course that will require significant student participation. Students will learn how to evaluate and present scientific literature and trace the development of ideas related to understanding the ecology and evolutionary biology of infectious diseases. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | A core set of ~10 classic publications encompassing unifying themes in infectious disease ecology and evolution, such as virulence, resistance, metapopulations, networks, and competition will be presented and discussed. Pathogens will include bacteria, viruses and fungi. Hosts will include animals, plants and humans. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Publications and class notes can be downloaded from a web page announced during the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Papers will be assigned and downloaded from a web page announced during the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
751-4506-00L | Plant Pathology III ![]() | W+ | 2 credits | 2G | M. Maurhofer Bringolf | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Identification based on host, symptoms and micro-morphology, completed with life cycles and related control measures of the most important fungal diseases and their causal pathogens of annual and perennial crops with agricultural significance. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students will learn and train preparation skills for microscopy, aquire knowledge of selected diseases (identification, biology of pathogen, epidemiology and systematics) and understand the corresponding integrated control measures practiced in Swiss agriculture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | One exercise will be based on computer and ocular camera, also to prepare the students for the final e-exam. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A script will be used on annual and perennial crops and their most important diseases. It will be updated stepwise | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The course will be in German (spec. nomenclature) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
751-5101-00L | Biogeochemistry and Sustainable Management ![]() | W+ | 3 credits | 2G | I. Feigenwinter, N. Buchmann, K.‑M. Kohonen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course focuses on the interactions between ecology, biogeochemistry and management of agro- and forest ecosystems, thus, coupled human-environmental systems. Students learn how human impacts on ecosystems via management or global change are mainly driven by effects on biogeochemical cycles and thus ecosystem functioning, but also about feedback mechanisms of terrestrial ecosystems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students will analyse and understand the complex and interacting processes of ecology, biogeochemistry and management of agroecosystems. They will use their theoretical knowledge in two flipped classroom exercises, but also set up a small weather station and program a data logger to collect meteorological variables, analyze large meteorological and flux data sets, and evaluate the impacts of weather events and management practices on the ecosystem greenhouse gas exchange. Thus, students will expand their computational competences. Moreover, students will be able to coordinate and work successfully in small (interdisciplinary) teams. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Agroecosystems play a major role in all landscapes, either for production purposes, ecological areas or for recreation. The human impact of any management on the environment is mainly driven by effects on biogeochemical cycles. Effects of global change impacts will also act via biogeochemistry at the soil-biosphere-atmosphere-interface. Thus, ecosystem functioning, i.e., the interactions between ecology, biogeochemistry and management of terrestrial systems, is the science topic for this course. Students will gain profound knowledge about biogeochemical cycles and greenhouse gas fluxes in managed grassland and/or cropland ecosystems as well as expand their computational competences. Responses of agroecosystems to the environment, i.e., to climate and weather events, but also to management will be studied. Two flipped class-room exercises include the assessment of an ecosystem disturbance and the experimental design of an own study. Dataloggers will be programmed, and a small weather station will be set up. Different meteorological and greenhouse gas flux data will be analysed (using R) and assessed in terms of production, greenhouse gas budgets, and carbon sequestration. Thus, students will learn how to collect, analyse and interpret data about the complex interactions of a coupled human-environmental system. Students will work in groups (3-4 persons per group) with data from a small weather station (dedicated to the course), as well as data from the long-term measurement network Swiss FluxNet and from global databases. Data from the intensively managed grassland site Chamau will be used to investigate the biosphere-atmosphere exchange of CO2, H2O, N2O and CH4. Functional relationships will be identified, greenhouse gas budgets will be calculated for different time periods and in relation to management over the course of a year. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts will be available in moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: Attendance of introductory courses in plant ecophysiology, ecology, and grassland or forest sciences. Knowledge of data analyses in R and statistics. Course will be taught in English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
751-3405-00L | Chemical Nature of Nutrients and their Availability to Plants: The Case of Phosphorus ![]() | W+ | 4 credits | 4G | E. Frossard | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The CNNAP course discusses the mechanistic relationships between nutrient speciation in fertilizer and nutrient uptake by plants using phosphorus as an example. The course involves theoretical aspects of nutrient cycling, laboratory work, data analysis and presentation, and the use of advanced methods in plant nutrition studies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | At the end of the CNNAP course, participants will obtain a mechanistic understanding of why and how the speciation of phosphorus in fertilizer can affect its release to the soil solution and subsequent uptake by plants. Students will be able to use this information for the development of fertilization schemes that maximize the nutrient uptake and fertilizer efficiency of crops or pastures. During the course, participants will become familiar with the use of radioisotopes and nuclear magnetic resonance as approaches to measure nutrient availability and forms, respectively and they will know the limits of these techniques. Students will also have the opportunity to improve their laboratory, presentation, discussion and writing skills. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Documents will be distributed during the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Documents will be distributed during the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The CNNAP lecture will take place at the ETH experimental station in Eschikon Lindau every second year. The next course will be organized in autumn 2024. The CNNAP course will take place if and only if 8 or more students are registered one week before the start. See the location of the station at: http://www.plantnutrition.ethz.ch/the-group/how-to-find-us.html We strongly advise students who are planning to be absent for more than one week during the semester NOT to visit this course. Students should have visited the plant nutrition lectures in the 3rd and 6th semesters and the lecture pedosphere in the 3rd semester of the agricultural study program of the ETH. If students do not have visited these courses they will have to acquire the necessary information by themselves as this knowledge is indispensable for the CNNAP course. As the CNNAP course does not take place in autumn 2023, we recommend students interested in integrated assessment of nutrient cycling in soil plant systems to visit the 8th semester lecture 751-3404-00L (Nutrient Fluxes in Soil-Plant Systems: The Case of Nitrogen) organized in spring 2024 by Oberson et al. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
751-5125-00L | Stable Isotope Ecology of Terrestrial Ecosystems ![]() ![]() | W+ | 2 credits | 2G | R. A. Werner, N. Buchmann, A. Gessler, M. Lehmann | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course provides an overview about the applicability of stable isotopes (carbon 13C, nitrogen 15N, oxygen 18O and hydrogen 2H) to process-oriented ecological research. Topics focus on stable isotopes as indicators for the origin of pools and fluxes, partitioning of composite fluxes as well as to trace and integrate processes. In addition, students carry out a small project during lab sessions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students will be familiar with basic and advanced applications of stable isotopes in studies on plants, soils, water and trace gases, know the relevant approaches, concepts and recent results in stable isotope ecology, know how to combine classical and modern techniques to solve ecophysiological or ecological problems, learn to design, carry out and interpret a small IsoProject, practice to search and analyze literature as well as to give an oral presentation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The analyses of stable isotopes often provide insights into ecophysiological and ecological processes that otherwise would not be available with classical methods only. Stable isotopes proved useful to determine origin of pools and fluxes in ecosystems, to partition composite fluxes and to integrate processes spatially and temporally. This course will provide an introduction to the applicability of stable isotopes to ecological research questions. Topics will focus on carbon (13C), nitrogen (15N), oxygen (18O) and hydrogen (2H) at natural isotope abundance and tracer levels. Lectures will be supplemented by intensive laboratory sessions, short presentations by students and computer exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts will be available on the webpage of the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Will be discussed in class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | This course is based on fundamental knowledge about plant ecophysiology, soil science, and ecology in general. Course will be taught in English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
|
Page 1 of 1