Search result: Catalogue data in Autumn Semester 2024

Science, Technology, and Policy Master Information
Minor in Natural Sciences and Engineering
Urbanization and Planning
NumberTitleTypeECTSHoursLecturers
701-1453-00LEcological Assessment and Evaluation Information W3 credits3GF. Knaus
AbstractThe course provides methods and tools for ecological evaluations dealing with nature conservation or landscape planning. It covers census methods, ecological criteria, indicators, indices and critically appraises objectivity and accuracy of the available methods, tools and procedures. Birds and plants are used as main example guiding through different case studies.
Learning objectiveStudents will be able to:
1) critically consider biological data books and local, regional, and national inventories;
2) evaluate the validity of ecological criteria used in decision making processes;
3) critically appraise the handling of ecological data and criteria used in the process of evaluation
4) perform an ecological evaluation project from the field survey up to the descision making and planning.
Lecture notesPowerpoint slides are available on the moodle page. Additional documents are handed out as copies.
LiteratureBasic literature and references are listed on the webpage.
Prerequisites / NoticeThe course structure changes between lecture parts, seminars and discussions. The didactic atmosphere is intended as working group.

Suggested prerequisites for attending this course are skills and knowledge equivalent to those taught in the following ETH courses:
- Pflanzen- und Vegetationsökologie
- Systematische Botanik
- Raum- und Regionalentwicklung
- Naturschutz und Naturschutzbiologie
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkassessed
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingassessed
Critical Thinkingassessed
Self-direction and Self-management fostered
363-1047-00LUrban Systems and TransportationW3 credits2GM. Köthenbürger, G. Loumeau
AbstractThis course is an introduction to urban and regional economics. It focuses on the formation and development of urban systems, and highlight how transport infrastructure investments can affect the location, size and composition of such systems.
Learning objectiveThe main objective of this course is to provide students with some basic tools to analyze the fundamental economic forces at play in urban systems (i.e., agglomeration and congestion forces), and the role of transport networks in shaping the structure of these systems. Why do urban areas grow or decline? How do transport networks affect the location of individuals and firms? Does the location of a firm determine its productivity? Can transport infrastructure investments reduce economic disparities? These are some of the questions that students should be able to answer after having completed the course.
ContentThe course is organized in four parts. I start with the key observation that economic activity (both in terms of population density and productivity) is unevenly distributed in space. For instance, the share of the population living in urban centers is increasing globally, from 16% in 1900 and 50% in 2000 to about 68% by the year 2050 (UN, World Economic Prospects, 2014). The goal of the first part is then to understand the economic forces at play behind these trends, looking at the effects within and across urban areas. I will also discuss how natural or man-made geographical characteristics (e.g., rivers, mountains, borders, etc.) affect the development of such urban systems.

In the second part, I discuss the planning and pricing of transport networks, moving from simple local models to more complex transport models at a global scale. The key aspects include: the first and second best road pricing, the public provision of transport networks and the demographic effects of transport networks.

In the third part, I combine the previous two parts and analyze the interaction between urban systems and transportation. Thereby, the main focus is to understand the economic mechanisms that can lead to a general equilibrium of all actors involved. However, as the study of the historical development of urban systems and transport networks provides interesting insights, I will discuss how their interaction in the past shapes today’s economic geography.

Finally, I broaden the scope of the course and explore related topics. There will be a particular emphasis on the relation between urban systems and fiscal federalism as well as environmental policies. Both aspects are important determinants of the contemporary developments of urban systems, and as such deserve our attention.

In general, this class focuses on the latest research developments in urban and regional economics, though it does not require prior knowledge in this field. It pays particular attention to economic approaches, which are based on theoretical frameworks with strong micro-foundations and allow for precise policy recommendations.
Lecture notesCourse slides will be made available to students prior to each class.
LiteratureCourse slides will be made available to students.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Social CompetenciesCommunicationfostered
Personal CompetenciesCreative Thinkingfostered
Critical Thinkingfostered
101-0509-00LInfrastructure Management 1: ProcessW6 credits2GB. T. Adey
AbstractInfrastructure management is the process that ensures infrastructure provides desired service over time. This course provides an overview of the process and insight into some of the most important parts, i.e., defining service, justifying interventions, monitoring the infrastructure system, and ensuring a well function infrastructure management organisation.
Learning objectiveThe objective of this course is to provide an overview of the infrastructure management process. The high-level process can be used as a starting point to ensure that infrastructure management is done professionally, efficiently and effectively. This process can be used to help improve the specific infrastructure management processes in the organisations.

More specifically upon completion of the course, students had their first experience with
• defining the service to be provided by infrastructure,
• developing and evaluating asset strategies, and converting them into programs / project portfolios
• establishing a monitoring program for an infrastructure system, and
• establishing basic rules and principles to ensure an infrastructure management organisation is running well.
ContentThe weekly lectures are structured as follows:
1 Introduction: An introduction to infrastructure management and the project.
2 Service: Determination of what service you are trying to provide with an infrastructure network is important in justifying the interventions you think are required and ensuring that investment decisions are aligned throughout an infrastructure management organisation. This lecture introduces the concept of serve and connects it to measurable indicators.
3 Help session 1: This session provides time for your group to ask questions as you define the service you want your infrastructure network to provide
4 Presentation 1: 4 groups will present their ideas on how they want their networks to provide service

5 Interventions: Justifying the interventions you want to execute to ensure you continue to provide the defined service requires you to model deterioration, determining economically justifiable strategies and explain which interventions will be postponed if you can’t do all you would like. This lecture is focused on explaining the main principles behind each of these concepts.
6 Help session 2: This session provides time for your group to ask questions as you justify the interventions you want to execute on your infrastructure network over time and explain what you will postpone if you cannot do all of them.
7 Presentation 2: 4 groups will present how they have justified interventions and how they have selected the ones they would like to postpone if required

8 Monitoring: To ensure you the infrastructure network is providing what you expect you need to monitor its performance and how projects are being done. This lecture is focused on the principles to ensure a monitoring system is set up that ensure that the infrastructure system is providing the expected service.
9 Help session 3: This session provides time for your group to ask questions on how to establish the monitoring systems for your infrastructure networks.
10 Presentation 3: 4 groups will present how they intended to monitor their systems and projects.

11 Organisation: Managing infrastructure only works well with great teams of people with great processes. This lecture focuses on the principles of ensuring a well function organisation and well-functioning processes.
12 Help session 4: This session provides time for your group to ask questions on how to ensure well-functioning organisations and well-functioning processes.
13 Presentation 4: 4 groups will present how they intended to ensure well-functioning organisations and well-functioning processes.
Lecture notes- The lecture materials consist of handouts and the slides.
- The lecture materials will be distributed via Moodle by the beginning of each lecture.
- The questions to be discussed in the discussion session will be distributed by the end of the day on the Monday before the discussion session.
LiteratureAppropriate literature will be handed out when required via Moodle.
Prerequisites / NoticeThis course has no prerequisites.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesfostered
Decision-makingfostered
Media and Digital Technologiesfostered
Problem-solvingfostered
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingfostered
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
103-0347-01LLandscape Planning and Environmental Systems (GIS Exercises) Restricted registration - show details W3 credits2UA. Grêt-Regamey, C. Brouillet, N. Klein, I. Nicholson Thomas
AbstractThe course content of the lecture Landscape Planning and Environmental Systems (103-0347-00 V) will be illustrated in practical GIS exercises (e.g. habitat modelling, land use change, ecosystem services, connectivity).
Learning objective- Practical application of theory from the lectures
- Quantitative assessment and evaluation of landscape characteristics
- Learning useful applications of GIS for landscape planning
- Developing landscape planning measures for practical case studies
Content- Applications of GIS in landscape planning
- Landscape analysis
- Landscape structural metrics
- Modelling habitats and land use change
- Calculating urban ecosystem services
- Ecological connectivity
Lecture notesA script and presentation slides for each exercise will be provided on Moodle.
LiteratureWill be named in the lecture.
Prerequisites / NoticeBasic GIS skills are strongly recommended.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesfostered
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingfostered
Media and Digital Technologiesassessed
Problem-solvingassessed
Project Managementassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityassessed
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
103-0347-00LLandscape Planning and Environmental Systems Restricted registration - show details W3 credits2VA. Grêt-Regamey
AbstractIn the course, students learn about methods for the identification and measurement of landscape characteristics, as well as measures and policies for landscape planning. Landscape planning is put into the context of environmental systems (soil, water, air, climate, flora and fauna) and discussed with regard to socio-political questions of the future.
Learning objectiveThe aims of this course are:
1) To illustrate the concept of landscape planning, the economic relevance of landscape and nature in the context of the environmental systems (soil, water, air, climate, flora and fauna).
2) To show landscape planning as an integral information system for the coordination of different instruments by illustrating the aims, methods, instruments and their functions in landscape planning.
3) To show the importance of ecosystem services.
4) To learn basics about nature and landscape: Analysis and assessment of the complex interactions between landscape elements, effects of current and future land use (ecosystem goods and services, landscape functions).
5) To identify and measure the characteristics of landscape.
6) Learn how to use spatial data in landscape planning.
ContentIn this course, the following topics are discussed:
- Definition of the concept of landscape
- Relevance of landscape planning
- Landscape metrics
- Landscape change
- Methods, instruments and aims of landscape planning (policy)
- Socio-political questions of the future
- Environmental systems, ecological connectivity
- Ecosystem services
- Urban landscape services
- Practice of landscape planning
- Use of GIS in landscape planning
Lecture notesNo script. The documentation, consisting of presentation slides are partly handed out and are provided for download on Moodle.
Prerequisites / NoticeThe contents of the course will be illustrated in the associated course 103-0347-01 U (Landscape Planning and Environmental Systems (GIS Exercises)) or in Project LAND within the Experimental and Computer Lab (for Environmental Engineers). A combination of courses is recommended.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesassessed
Problem-solvingassessed
Project Managementassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
101-0427-01LPublic Transport Design and OperationsW6 credits4GF. Corman
AbstractThis course aims at analyzing, designing, improving public transport systems, as part of the overall transport system.
Learning objectivePublic transport is a key driver for making our cities more livable, clean and accessible, providing safe, and sustainable travel options for millions of people around the globe. Proper planning of public transport system also ensures that the system is competitive in terms of speed and cost. Public transport is a crucial asset, whose social, economic and environmental benefits extend beyond those who use it regularly; it reduces the amount of cars and road infrastructure in cities; reduces injuries and fatalities associated to car accidents, and gives transport accessibility to very large demographic groups.

Goal of the class is to understand the main characteristics and differences of public transport networks.
Their various performance criteria based on various perspective and stakeholders.
The most relevant decision making problems in a planning tactical and operational point of view
At the end of this course, students can critically analyze existing networks of public transport, their design and use; consider and substantiate possible improvements to existing networks of public transport and the management of those networks; optimize the use of resources in public transport.

General structure:
general introduction of transport, modes, technologies,
system design and line planning for different situations,
mathematical models for design and line planning
timetabling and tactical planning, and related mathematical approaches
operations, and quantitative support to operational problems,
evaluation of public transport systems.
ContentBasics for line transport systems and networks
Passenger/Supply requirements for line operations
Objectives of system and network planning, from different perspectives and users, design dilemmas
Conceptual concepts for passenger transport: long-distance, urban transport, regional, local transport

Planning process, from demand evaluation to line planning to timetables to operations
Matching demand and modes
Line planning techniques
Timetabling principles

Allocation of resources
Management of operations
Measures of realized operations
Improvements of existing services
Lecture notesLecture slides are provided.
LiteratureCeder, Avi: Public Transit Planning and Operation, CRC Press, 2015, ISBN 978-1466563919 (English)

Holzapfel, Helmut: Urbanismus und Verkehr – Bausteine für Architekten, Stadt- und Verkehrsplaner, Vieweg+Teubner, Wiesbaden 2012, ISBN 978-3-8348-1950-5 (Deutsch)

Hull, Angela: Transport Matters – Integrated approaches to planning city-regions, Routledge / Taylor & Francis Group, London / New York 2011, ISBN 978-0-415-48818-4 (English)

Vuchic, Vukan R.: Urban Transit – Operations, Planning, and Economics, John Wiley & Sons, Hoboken / New Jersey 2005, ISBN 0-471-63265-1 (English)

Walker, Jarrett: Human Transit – How clearer thinking about public transit can enrich our communities and our lives, ISLAND PRESS, Washington / Covelo / London 2012, ISBN 978-1-59726-971-1 (English)

White, Peter: Public Transport - Its Planning, Management and Operation, 5th edition, Routledge, London / New York 2009, ISBN 978-0415445306 (English)
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Customer Orientationassessed
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
103-0317-00LSpatial Planning and Development
Only for master students, otherwise a special permisson by the lecturer is required.
W3 credits2GD. Kaufmann, A. Kuitenbrouwer
AbstractThe course deals with theoretical, methodological and practical foundations around the understanding and production of urban space. It discusses theoretical planning frameworks, and tasks of spatial planning at various scales, addresses current and future challenges of spatial development and reviews approaches for a sustainable development in Switzerland and beyond.
Learning objectiveThe overall aim of the course is to raise students’ awareness and curiosity about the aspects that guide and shape our environment. Through lectures, readings, discussions, and exercises, the course seeks to achieve this goal by accumulating crucial notions from both theoretical and practice-based examples, and applying such knowledge into tasks of spatial planning.
At the end of this course, students should feel empowered to critically engage with the teaching topic from a variety of approaches. By taking up the lecture, the students should be able to to analyse, interpret and reflect complex cross-scale tasks of spatial development and transformation, and to use their theoretical, methodical and professional knowledge to tackle them.

You as students will...
... assess present and future core challenges of spatial planning and development.
... discuss the role of spatial planning and development in shaping our living environment.
... differentiate the levels, scales and tasks of spatial planning instruments and processes.
… reflect on theoretical concepts and pratical examples of decision-making of spatial tasks.
... identify and apply spatially relevant principles and systems for action-oriented planning and decision-making.
... acquire theoretical, methodological, practical know-how to examine, clarify, and solve tasks on spatial development
ContentSpatial development as a discipline deals with the development, (trans)formation, and arrangement of our urban environment. We simultaneously perceive and contribute to its transformation, making space the result of manifold intended and unintended changes. To mediate between different demands, interests and interventions of multiple actors, a forward-looking, evidence-based, and action-oriented planning is necessary. As guidance for future action, (spatial) planning has to be committed to the sustainable handling as well as just allocation of resources, in particular of the non-replicable resource land.

The course focuses on both theoretical concepts and practice-oriented approaches to gain knowledge and be equipped to address current issues in spatial planning and development. This is mirrored in the course’s structure made of both of lectures and exercises.

The lecture series introduces necessary key concepts and covers the following main topics:
- Drivers of spatial development, inward development, core tasks and current challenges for (spatial) planners.
- Interplay of formal and informal planning instruments across scales and actors.
- Differentiation urban typologies, their characteristics and challenges
- Types of spatial analysis and key figures
- Planning approaches and the (political) steering of spatial development.
- Types of processes and participation in spatial development.
- Approaches for planning complex urban situations
- Concepts for sustainable development

The exercises provide a framework for practical application of the learned theoretical concepts of spatial planning to real-life situations.
Lecture notesA course will be set up on Moodle for the provision of lectures and documents, to upload group deliverables and to ask questions in a discussion Forum. All documents provided are exclusively available for use within this course.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCooperation and Teamworkfostered
Personal CompetenciesCreative Thinkingassessed
Critical Thinkingassessed
Self-direction and Self-management fostered
052-0707-00LUrban Design III Information W2 credits2VH. Klumpner, F. T. Salva Rocha Franco
AbstractStudents are introduced to a narrative of 'Urban Stories' through a series of three tools driven by social, governance, and environmental transformations in today's urbanization processes. Each lecture explores one city's spatial and organizational ingenuity born out of a particular place's realities, allowing students to transfer these inventions into a catalog of conceptual tools.
Learning objectiveHow can students of architecture become active agents of change? What does it take to go beyond a building's scale, making design-relevant decisions to the city rather than a single client? How can we design in cities with a lack of land, tax base, risk, and resilience, understanding that Zurich is the exception and these other cities are the rule? How can we discover, set rather than follow trends and understand existing urban phenomena activating them in a design process? The lecture series produces a growing catalog of operational urban tools across the globe, considering Governance, Social, and Environmental realities. Instead of limited binary comparing of cities, we are building a catalog of change, analyzing what design solutions cities have been developing informally incrementally over time, why, and how. We look at the people, institutions, culture behind the design and make concepts behind these tools visible. Students get first-hand information from cities where the chair as a Team has researched, worked, or constructed projects over the last year, allowing competent, practical insight about the people and topics that make these places unique. Students will be able to use and expand an alternative repertoire of experiences and evidence-based design tools, go to the conceptual core of them, and understand how and to what extent they can be relevant in other places. Urban Stories is the basic practice of architecture and urban design. It introduces a repertoire of urban design instruments to the students to use, test, and start their designs.
ContentUrban form cannot be reduced to physical space. Cities result from social construction, under the influence of technologies, ecology, culture, the impact of experts, and accidents. Urban un-concluded processes respond to political interests, economic pressure, cultural inclinations, along with the imagination of architects and urbanists and the informal powers at work in complex adaptive systems. Current urban phenomena are the result of urban evolution. The facts stored in urban environments include contributions from its entire lifecycle, visible in the physical environment, and non-physical aspects. This imaginary city exists along with its potentials and problems and with the conflicts that have evolved. Knowledge and understanding, along with a critical observation of the actions and policies, are necessary to understand the diversity and instability present in the contemporary city and understand how urban form evolved to its current state.

How did cities develop into the cities we live in now? Urban plans, instruments, visions, political decisions, economic reasonings, cultural inputs, and social organization have been used to operate in urban settlements in specific moments of change. We have chosen cities that exemplify how these instruments have been implemented and how they have shaped urban environments. We transcribe these instruments into urban operational tools that we have recognized and collected within existing tested cases in contemporary cities across the globe.

This lecture series will introduce urban knowledge and the way it has introduced urban models and operational modes within different concrete realities, therefore shaping cities. The lecture series translates urban knowledge into operational tools, extracted from cities where they have been tested and become exemplary samples, most relevant for understanding how the urban landscape has taken shape. The tools are clustered in twelve thematic clusters and three tool scales for better comparability and cross-reflection.

The Tool case studies are compiled into a global urbanization toolbox, which we use as typological models to read the city and critically reflect upon it. The presented contents are meant to serve as inspiration for positioning in future professional life and provide instruments for future design decisions.

In an interview with a local designer, we measure our insights against the most pressing design topics in cities today, including inclusion, affordable housing, provision of public spaces, and infrastructure for all.
Lecture notesThe learning material, available via https://moodle-app2.let.ethz.ch/ is comprised of the following:

- Toolbox 'Reader' with an introduction to the lecture course and tool summaries
- Weekly exercise tasks
- Infographics with basic information about each city
- Quiz question for each tool
- Additional reading material
- Interviews with experts
- Archive of lecture recordings

Structure and Grading:
- 70% Exam
- 20% Exercise (one group workshop per semester)  
- 10% Participation (drawing exercises)  

For one-semester students, only a Research will be required.
Literature- Reading material will be provided throughout the semester.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesfostered
Method-specific CompetenciesAnalytical Competenciesfostered
Decision-makingassessed
Media and Digital Technologiesassessed
Problem-solvingfostered
Project Managementassessed
Social CompetenciesCommunicationfostered
Cooperation and Teamworkassessed
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityassessed
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
851-0252-08LEvidence-Based Design: Methods and Tools for Evaluating Architectural Design Information Restricted registration - show details
Particularly suitable for students of D-ARCH.
W3 credits2SC. Hölscher, L. Aguilar Melgar, M. Gath Morad, L. Narvaez Zertuche, C. Veddeler, to be announced
AbstractStudents are taught a variety of analytic techniques that can be used to evaluate architectural design. The concept of evidence-based design is introduced, and complemented with theoretical background on space syntax and spatial cognition. This is a project-oriented course, students implement a range of methods on a sample project. The course is tailored for architecture design students.
Learning objectiveThe course aims to teach students how to evaluate a design project from the perspective of the end user. The concept of evidence-based design is introduced through a series of case studies. Students are given a theoretical background in space syntax and spatial cognition, with a view to applying this knowledge during the design process. The course covers a range of methods including visibility analysis, network analysis, conducting real-world observations, and virtual reality for architectural design. Students apply these methods to a case study of their choice, which can be at building or urban scale. For students taking a B-ARCH or M-ARCH degree, this can be a completed or ongoing design studio project. The course gives students the chance to implement the methods iteratively and explore how best to address the needs of the eventual end-user during the design process.

The course is tailored for students studying for B-ARCH and M-ARCH degrees. As an alternative to obtaining D-GESS credit, architecture students can obtain course credit in "Vertiefungsfach" or "Wahlfach".
  •  Page  1  of  1