Search result: Catalogue data in Autumn Semester 2021
Earth Sciences Master ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
651-4243-00L | Seismic Stratigraphy and Facies | W | 2 credits | 3G | G. Eberli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course teaches the techniques of seismic interpretation for solving geological and environmental problems. A special focus is given to the seismic facies analysis and seismic sequence stratigraphy of different depositional systems. In addition, examples are presented how seismic data can be integrated into research projects in basin analysis, paleoceanography and paleoclimatology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | 1. Acquire techniques for a comprehensive interpretation of seismic sections for solving geologic, stratigraphic and environmental problems 2. Correlation of seismic facies and seismic attributes to lithologic facies in different sedimentary systems 3. Learn the principles and techniques of seismic sequence stratigraphy and the differences between lithostratigraphy and sequence stratigraphy 4. Learn to integrate seismic data into paleoceonagraphic and paleoclimatic research. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The four day course consists of lectures that are accompanied by a variety of exercises. Day 1: Introduction seismic facies analysis with exercise Seismic resolution Seismic facies of contourite drift systems and their value as physical indicators of global current changes. Day 2: Seismic attributes and seismic geomorphology Siliciclastic deltas, shelves and turbidite systems, 2D-3D Exercise: Seismic section Tarragon Basin and reconstructing the basin evolution with respect to the climate conditions at the end of the Miocene. Seismic facies carbonate systems Carbonates as recorders of sea level and paleoclimate Deepwater environments, including cold-water coral habitats Day 3: Carbonates versus volcanic seismic facies Introduction seismic attributes Faults and structures on seismic sections Seismic facies of mixed systems with Exercises from Canada and the Paradox Basin Day 4: Sea level and sedimentation Telling ages on seismic section Seismic stratigraphy and sequence stratigraphy Exercise: Sequence analysis Straits of Andros Final discussion | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | An original script (110 pages) designed for the class will be distributed at the beginning of the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Books Seismic Interpretation of Depositional Systems: Ariztegui, D. and Wildi, W. (eds.), 2003, Lake Systems from Ice Age to Industrial Time. Eclogae Geologicae Helvetiae Special Issue, v. 96, S1-S133. Bacon, M., Simm, R. and Redshaw, T., 2003, 3-D Seismic Interpretation. Cambridge University Press, 112 pp. Chopra, S., and K. J. Marfurt, 2007, Seismic attributes for prospect identification and reservoir characterization. SEG Geophysical Development Series, pp 481. Davies, R.J., Posementier, H.W., Wood, L.J., and Cartwright, J.A. (eds.), 2007, Seismic Geomorphology. Geological Society Special Publication 277, pp274. Eberli, G.P., Massaferro, J.L., and Sarg, J.F. (eds.), 2004, Seismic Imaging of Carbonate Reservoirs and Systems. AAPG Memoir 81. Rebesco, M. & Camerlenghi, A., 2008, Contourites. Developments in Sedimentology 60, Elsevier.Weimer, P. and Davis, T.L. (eds.), 1996, Applications of 3-D seismic data to exploration and production. AAPG Studies in Geology, No. 42 and SEG Geophysical Development Series, No. 5., pp. 270. Gupta, S. and Cowie, P. (eds). 2000, Controls in the Stratigraphic Development of Extensional Basins. Basin Research Special Issue, v. 12, 445pp Harris, P.M., Saller, A.H., and Simo, J.A. (eds.), 1999, Advances in carbonate sequence stratigraphy: application to reservoirs, outcrops, and models. SEPM Special Publication v. 63. Payton, C.E., (ed.), 1977, Seismic stratigraphy-applications to hydrocarbon exploration. AAPG Memoir 26, 516pp. Van Wagoner, J.C., R.M. Mitchum, K.M. Campion, and V.D. Rahmanian, 1990, Siliciclastic sequence stratigraphy in well logs, cores, and outcrops. AAPG Methods in Exploration Series, No. 7, 55pp. Weimer, P. and Posamentier, H.W., 1993, Siliciclastic Sequence Stratigraphy: Recent Developments and Applications. AAPG Memoir 58. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basic knowledge in sedimentology and stratigraphy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4021-00L | Engineering Seismology | W+ | 3 credits | 2G | D. Fäh, V. Perron | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course is a general introduction to the methods of seismic hazard analysis. It provides an overview of the input data and the tools in deterministic and probabilistic seismic hazard assessment, and discusses the related uncertainties. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This course is a general introduction to the methods of seismic hazard analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | In the course it is explained how the disciplines of seismology, geology, strong-motion geophysics, and earthquake engineering contribute to the evaluation of seismic hazard. It provides an overview of the input data and the tools in deterministic and probabilistic seismic hazard assessment, and discusses the related uncertainties. The course includes the discussion related to Intensity and macroseismic scales, historical seismicity and earthquake catalogues, ground motion parameters used in earthquake engineering, definitions of the seismic source, ground motion attenuation, site effects and microzonation, and the use of numerical tools to estimate ground motion parameters, both in a deterministic and probabilistic sense. During the course recent earthquakes and their impacts are discussed and related to existing hazard assessments for the areas of interest. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4015-00L | Earthquakes I: Seismotectonics | O | 3 credits | 2G | A. P. Rinaldi, T. Diehl | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | If you're interested in knowing more about the relationship between seismicity and plate tectonics, this is the course for you. (If you're not that interested, but your program of study requires that you complete this course, this is also the course for you.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The aim of the course is to obtain a basic understanding of the physical process behind earthquakes and their basic mathematical description. By the conclusion of this course, we hope that you will be able to: - describe the relationship between earthquakes and plate tectonics in a more sophisticated and complete way - explain earthquake source representations of varying complexity; - address earthquakes in the context of different tectonic settings; - explain the statistical behaviour of global earthquakes - describe and connect the ingredients for a seismotectonic study | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course features a series of 14 meetings, in which we review some fundamentals of continuum mechanics and tensor analysis required for a complete understanding of the relation between earthquakes and plate tectonics. Our goal is to help you understand deformation the small scale (fault) to the scale of plate tectonics. We will tell you about several ways to represent an earthquake source; we'll present these in order of increasing sophistication. You will enjoy (at least) a computer/class exercise and a guest lecture. Topics covered in the course include: review of stress and deformation in the Earth, stress and strain tensors, rheology and failure criteria, fault stresses, friction and effects of fluids earthquake focal mechanisms; relationship between stress fields and focal mechanisms; seismic moment and moment tensors; crustal deformation from seismic, geologic, and geodetic observations; earthquake stress drop, scaling, and source parameters; global earthquake distribution; current global earthquake activity; different seismotectonic regions; examples of earthquake activity in different tectonic settings. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Course notes will be made available on a designated course web site. Most of the topics discussed in the course are available in the book mentioned below. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | S. Stein and M. Wyssession, An introduction to seismology, earthquakes and earth structure, Blackwell Publishing, Malden, USA, (2003). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basic knowledge of continuum mechanics and rock mechanics, as well as notion of tensor analysis is strongly suggested. We recommend to have taken the course Continuum Mechanics (generally taught during the Fall semester). This course will be taught in fall 2017 and it will be followed by Earthquakes 2: Source Physics in Spring 2018. The course will be evaluated in a final written test covering the topics discussed during the lectures. The course will be worth 3 credit points, and a satisfactory total grade (4 or better) is needed to obtain 3 ECTS. The course will be given in English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() One additional elective course of at least 3KP has to be completed for this Module according to prior agreement with the Subject Advisor (Autumn or Spring Semester). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() The courses of this module are offered by UZH and must be registered at UZH. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4267-00L | Specializing in Geographic Information Science V (University of Zürich) No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: GEO372 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html | W+ | 5 credits | 2V + 2U | University lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() The Courses of Choice are offered by UZH and must be approved by the subject advisor. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() Courses are only offered in spring semester. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4901-00L | Quaternary Dating Methods ![]() | O | 3 credits | 2G | I. Hajdas, M. Christl, S. Ivy Ochs | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Reconstruction of time scales is critical for all Quaternary studies in both Geology and Archeology. Various methods are applied depending on the time range of interest and the archive studied. In this lecture, we focus on the last 50 ka and the methods that are most frequently used for dating Quaternary sediments and landforms in this time range. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students will be made familiar with the details of the six dating methods through lectures on basic principles, analysis of case studies, solving of problem sets for age calculation and visits to dating laboratories. At the end of the course students will: 1. understand the fundamental principles of the most frequently used dating methods for Quaternary studies. 2. be able to calculate an age based on data of the six methods studied. 3. choose which dating method (or combination of methods) is suitable for a certain field problem. 4. critically read and evaluate the application of dating methods in scientific publications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Introduction: Time scales for the Quaternary, Isotopes and decay 2. Radiocarbon dating: principles and applications 3. Cosmogenic nuclides: 3He,10Be, 14C, 21Ne, 26Cl, 36Cl 4. U-series disequilibrium dating 5. Luminescence dating 6. Introduction to incremental: varve counting, dendrochronology and ice cores chronologies 7. Cs-137 and Pb-210 (soil, sediments, ice core) 8. Summary and comparison of results from several dating methods at specific sites | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Visit to radiocarbon lab, cosmogenic nuclide lab, accelerator (AMS) facility. Visit to Limno Lab and sampling a sediment core Optional (individual): 1-5 days hands-on radiocarbon dating at the C14 lab at ETH Hoenggerebrg Required: attending the lecture, visiting laboratories, handing back solutions for problem sets (Exercises) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() Additional elective courses of at least 6KP have to be completed for this Module according to prior agreement with the Subject Advisor (Autumn or Spring Semester). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-3561-00L | Cryosphere | W+ | 3 credits | 2V | M. Huss, A. Bauder, D. Farinotti | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course introduces the different components of the cryosphere - snow, glaciers, ice sheets, sea ice and lake ice, and permafrost - and their respective roles in the climate system. For each subsystem, essential physical aspects are emphasized, and their dynamics are described quantitatively and using examples. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students are able to - qualitatively explain relevant processes, feedbacks and relationships between the different components of the cryosphere, - quantify and interpret physical processes, which determine the state of the cryospheric components, with simple calculations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course provides an introduction into the various components of the cryosphere: snow, glaciers, ice sheets, sea ice and lake ice, permafrost, and their roles in the climate system. Essential physical aspects are emphasized for each subsystem: e.g. the material properties of ice, mass balance and dynamics of glaciers, or the energy balance of sea ice. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts will be distributed during the teaching semester | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Benn, D., & Evans, D. J. (2014). Glaciers and glaciation. Routledge. Cuffey, K. M., & Paterson, W. S. B. (2010). The physics of glaciers. Academic Press. Hooke, R. L. (2019). Principles of glacier mechanics. Cambridge University Press. Further literature will be indicated during the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-1581-00L | Seminar in Glaciology | W | 3 credits | 2S | A. Bauder | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to classic and modern literature of research in Glaciology. Active participation is expected and participants are mentored by PhD students of Glaciology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | In-depth knowledge of selected topics of research in Glaciology. Introduction to different types of scientific presentation. Improve ability of the discussion of scientific topics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Selected topics of scientific research in Glaciology | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Copies/pdf of scientific papers will be distributed during the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Active participation is expected with presence at the sessions. Only s limited number of participants can be accepted. One of the following courses should be taken as preparation: - 651-3561-00L Kryosphäre - 101-0289-00L Applied Glaciology - 651-4101-00L Physics of Glaciers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4077-00L | Quantification and Modeling of the Cryosphere: Dynamic Processes (University of Zurich) No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: GEO815 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html | W | 3 credits | 1V | University lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Overview of the most important earth surface processes and landforms in cold regions (regions with glaciers and intense frost) with emphasis on high-mountain aspects. Discussion of present research challenges. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Knowledge of the most prominent climate-related geomorphological processes and phenomena in high-mountain regions, understanding of primary research challenges. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Erosion and sedimentation by glaciers as a function of topography, englacial temperature, sediment balance, sliding and melt water runoff. Processes and landforms in regions of seasonal and perennial frost (frost weathering, rock falls, debris cones/talus, solifluction, permafrost creep/rock glaciers, debris flows). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Glacial and periglacial geomorphodynamics in high-mountain regions. Ca. 100 pages. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | references in skript | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basic knowledge about geomorphology and glaciers/permafrost from corresponding courses at ETH/UZH or from the related lecture notes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4101-00L | Physics of Glaciers ![]() | W | 3 credits | 3G | M. Lüthi, F. T. Walter, M. Werder | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Understanding glaciers and ice sheets with simple physical concepts. Topics include the reaction of glaciers to the climate, flow of glacier ice, temperature in glaciers and ice sheets, glacier hydrology, glacier seismology, basal motion and calving glaciers. A special focus is the current development of the ice sheets of Greenland and Antarctica. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | After the course the students are able understand and interpret measurements of ice flow, subglacial water pressure and ice temperature. They will have an understanding of glaciology-related physical concepts sufficient to understand most of the contemporary literature on the topic. The students will be well equipped to work on glacier-related problems by numerical modeling, remote sensing, and field work. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The dynamics of glaciers and polar ice sheets is the key requisite to understand their history and their future evolution. We will take a closer look at ice deformation, basal motion, heat flow and glacier hydraulics. The specific dynamics of tide water and calving glaciers is investigated, as is the reaction of glaciers to changes in mass balance (and therefore climate). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | http://people.ee.ethz.ch/~luethim/teaching.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | A list of relevant literature is available on the class web site. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | High school mathematics and physics knowledge required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0289-00L | Applied Glaciology | W | 4 credits | 2G | D. Farinotti, A. Bauder, M. Werder | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course transmits fundamental knowledge for treating applied glaciological problems. Topics include climate-glacier interactions, glacier ice flow, glacier hydrology, ice avalanches, and lake ice. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The objectives of the courses are to: - learn about fundamental glaciological processes, including glacier mass balance, ice dynamics, and glacier-related hazards; - apply the above knowledge to some case studies inspired by contract-works performed at ETH's Glaciology section; - generate the own computer code to solve the above case studies, and interpret the results; - understand, both in class and in the field, the practical relevance of glaciology, with a focus on the Swiss applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course will develop along the following outline: - How glaciology became a scientific discipline - Glaciology and hydropower - Glacier mechanics and ice flow - Gravitational glacier instabilities - Glacier hydrology and glacier lake outbursts - Lake ice and ice bearing capacity - Field excursion to Jungfraujoch - Discussion of the exercises performed during the semester | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Digital lecture handouts will be distributed prior to each class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Links to relevant literature will be provided during the classes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Completed BSc studies. Basic knowledge in computer scripting in any language (e.g. Python, R, Julia, Matlab, IDL, ...) will be advantageous for solving the exercises. The exercises will be performed in groups. A minimal level of fitness is required for the field excursion. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-3521-00L | Tectonics | W+ | 3 credits | 2V | W. Behr, S. Willett | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Comprehensive understanding of evolution, mechanics, and rheology of divergent, convergent and wrenching tectonic systems from the lithospheric scale to local shallow crustal and outcrop-scales. Evaluation of plate tectonic and other orogenic processes through the study of reference examples of taken in Alps-Himalaya orogenic system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Comprehensive understanding of evolution, mechanics, and rheology of divergent, convergent and wrenching tectonic systems from the lithospheric scale to local shallow crustal and outcrop-scales. Assessment of mechanisms responsible for plate movements (the Earth as a heat transfer machine, dynamics of earth mantle, plate driving forces) and subsequent large-scale structures (oceanic basins and cycle of the oceanic lithosphere, convergence and mountain systems and continental growth, etc) through theoretical and experimental information. Evaluation of plate tectonic and other orogenic processes through the study of reference examples of taken in Alps-Himalaya orogenic system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Plate tectonic frame work: earth cooling and mantle-plate interaction, three kinds of plate boundaries and their roles and characteristics, cycle of oceanic lithosphere, longlifety and growth of continents, supercontinents. Rheology of layered lithosphere and upper mantle. Obduction systems Collisions systems Extensional systems Basin evolution Passive and active continental margin evolution | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Condie, K. C. 1997. Plate tectonics and crustal evolution. Butterworth-Heinemann, Oxford. Cox, A. & Hart, R. B. 1986. Plate tectonics. How it works. Blackwell Scientific Publications, Oxford. Dewey, J. F. 1977. Suture zone complexities: A review. Tectonophysics 40, 53-67. Dewey, J. F., Pitman III, W. C., Ryan, W. B. F. & Bonin, J. 1973. Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin 84, 3137-3180. Kearey, P. & Vine, F. J. 1990. Global tectonics. Blackwell Scientific Publications, Oxford. Park, R. G. 1993. Geological structures and moving plates. Chapman & Hall, Glasgow. Turcotte, D. L. & Schubert, G. 2002. Geodynamics. Cambridge University Press, Cambridge. Windley, B. F. 1995. The evolving continents. John Wiley & Sons Ltd, Chichester. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() The compulsory courses take place in spring semester. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() The courses of choice are offered by UZH and must be registered at UZH. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-1380-00L | Paleontological Excursions on Weekends (University of Zürich) ![]() No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: BIO279 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html | W | 1 credit | 1P | University lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Ein- oder zweitägige Geländeaufenthalte (eventuell mit Museumsbesuch) zum Vertiefen regionalgeologischer und erdgeschichtlicher Kenntnisse sowie zum Sammeln praktischer paläontologischer Erfahrungen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Besuch von Fossilvorkommen im In- und Ausland, um die Erhaltung der Fossilien, die fazielle Ausbildung und die Stratigraphie der fossilführenden Schichten kennenzulernen und zu diskutieren sowie gegebe- nenfalls Fossilien zu sammeln. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Bevorzugte Ziele ein- und zweitägiger Exkursionen sind: Jura der Nordschweiz und von Süddeutschland. Kreide des westlichen Juragebirges und des Helvetikums. Mesozoikum des Südtessins, speziell des Monte San Giorgio. Molasse der weiteren Umgebung von Zürich. Ziele mehrtägiger Exkursionen sind u. a.: Mesozoikum und Tertiär der Südalpen. Tertiär des Wiener Beckens. Paläozoikum der Eifel, des Barrandiums, von Gotland und von Wales. Jura von Südengland. Jura und Kreide von Südfrankreich. Paläozoikum und Mesozoikum in Spanien. Aktuopaläontologie im Watt der Nordsee. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4901-00L | Quaternary Dating Methods ![]() | W | 3 credits | 2G | I. Hajdas, M. Christl, S. Ivy Ochs | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Reconstruction of time scales is critical for all Quaternary studies in both Geology and Archeology. Various methods are applied depending on the time range of interest and the archive studied. In this lecture, we focus on the last 50 ka and the methods that are most frequently used for dating Quaternary sediments and landforms in this time range. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students will be made familiar with the details of the six dating methods through lectures on basic principles, analysis of case studies, solving of problem sets for age calculation and visits to dating laboratories. At the end of the course students will: 1. understand the fundamental principles of the most frequently used dating methods for Quaternary studies. 2. be able to calculate an age based on data of the six methods studied. 3. choose which dating method (or combination of methods) is suitable for a certain field problem. 4. critically read and evaluate the application of dating methods in scientific publications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Introduction: Time scales for the Quaternary, Isotopes and decay 2. Radiocarbon dating: principles and applications 3. Cosmogenic nuclides: 3He,10Be, 14C, 21Ne, 26Cl, 36Cl 4. U-series disequilibrium dating 5. Luminescence dating 6. Introduction to incremental: varve counting, dendrochronology and ice cores chronologies 7. Cs-137 and Pb-210 (soil, sediments, ice core) 8. Summary and comparison of results from several dating methods at specific sites | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Visit to radiocarbon lab, cosmogenic nuclide lab, accelerator (AMS) facility. Visit to Limno Lab and sampling a sediment core Optional (individual): 1-5 days hands-on radiocarbon dating at the C14 lab at ETH Hoenggerebrg Required: attending the lecture, visiting laboratories, handing back solutions for problem sets (Exercises) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4077-00L | Quantification and Modeling of the Cryosphere: Dynamic Processes (University of Zurich) No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: GEO815 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html | W | 3 credits | 1V | University lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Overview of the most important earth surface processes and landforms in cold regions (regions with glaciers and intense frost) with emphasis on high-mountain aspects. Discussion of present research challenges. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Knowledge of the most prominent climate-related geomorphological processes and phenomena in high-mountain regions, understanding of primary research challenges. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Erosion and sedimentation by glaciers as a function of topography, englacial temperature, sediment balance, sliding and melt water runoff. Processes and landforms in regions of seasonal and perennial frost (frost weathering, rock falls, debris cones/talus, solifluction, permafrost creep/rock glaciers, debris flows). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Glacial and periglacial geomorphodynamics in high-mountain regions. Ca. 100 pages. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | references in skript | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basic knowledge about geomorphology and glaciers/permafrost from corresponding courses at ETH/UZH or from the related lecture notes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() The courses of this module are offered by UZH and must be registered at UZH. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4263-00L | Remote Sensing and Geographic Information Science V (University of Zürich) No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: GEO371 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html | W+ | 5 credits | 2V + 2U | University lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4269-00L | Specialisation in Remote Sensing: Spectroscopy of the Earth System (University of Zurich) No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: GEO442 Prerequisite: Remote Sensing Methods (UZH Module Code: GEO371) Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html | W | 6 credits | 2V + 2U | University lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4257-00L | Specialisation in Remote Sensing: SAR and LIDAR (University of Zurich) No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: GEO443 Prerequisite: Remote Sensing Methods (UZH Module Code: GEO0371) Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html | W | 6 credits | 2V + 2U | University lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() Courses are only offered in spring semester. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
» Choice from Engineering Geology Required Modules | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
» Choice from Geophysics Compulsory Modules | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
» Choice from Geophysics Restricted Choice Modules |
Page 2 of 3
All