Suchergebnis: Katalogdaten im Frühjahrssemester 2023
Biomedical Engineering Master ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() Diese Fächer sind für die Vertiefung in Biomechanics besonders empfohlen. Bei abweichender Fächerwahl konsultieren Sie bitte den Track Adviser. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
376-1974-00L | Colloquium in Biomechanics ![]() | W | 2 KP | 2K | B. Helgason, P. Chansoria, S. J. Ferguson, R. Müller, D. K. Ravi, J. G. Snedeker, W. R. Taylor, M. Zenobi-Wong | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Current topics in biomechanics presented by speakers from academia and industry. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Getting insight into actual areas and problems of biomechanics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0673-00L | Physics in Medical Research: From Humans to Cells | W | 6 KP | 2V + 1U | B. K. R. Müller | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The aim of this lecture series is to introduce the role of physics in state-of-the-art medical research and clinical practice. Topics to be covered range from applications of physics in medical implant technology and tissue engineering, through imaging technology, to its role in interventional and non-interventional therapies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The lecture series is focused on applying knowledge from physics in diagnosis, planning, and therapy close to clinical practice and fundamental medical research. Beside a general overview, the lectures give a deep insight into a very few selected techniques, which will help the students to apply the knowledge to a broad range of related techniques. In particular, the lectures will elucidate the physics behind the X-ray imaging currently used in clinical environment and contemporary high-resolution developments. It is the goal to visualize and quantify microstructures of human tissues and implants as well as their interface. Physicists in medicine are working on modeling and simulation. Based on the vascular structure in cancerous and healthy tissues, the characteristic approaches in computational physics to develop strategies against cancer are presented. In order to deliberately destroy cancerous tissue, heat can be supplied or extracted in different manner: cryotherapy (heat conductivity in anisotropic, viscoelastic environment), radiofrequency treatment (single and multi-probe), laser application, and proton therapy. Mechanical stimuli can drastically influence soft and hard tissue behavior. The students should realize that a physiological window exists, where a positive tissue response is expected and how the related parameter including strain, frequency, and resting periods can be selected and optimized for selected tissues such as bone. For the treatment of severe incontinence, we are developing artificial smart muscles. The students should have a critical look at promising solutions and the selection procedure as well as realize the time-consuming and complex way to clinical practice. The course will be completed by relating the numerous examples and a common round of questions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This lecture series will cover the following topics: Physics in Medical Research: From humans to cells - introduction and overview Hard X-ray-based computed tomography in clinics and related research Conventional microtomography for tissue and implant characterization Synchrotron radiation-based tomography of medically relevant objects Comparing microtomography in absorption- and phase-contrast modes Tomographic imaging of cells and subcellular structures Physical approaches in medical imaging Unconventional approaches in hard X-ray imaging: Iterative reconstruction for laminography Quantitative evaluation of medically relevant, three-dimensional data Nondestructive imaging of unique objects: Physicists support museum science From open surgery to non-invasive interventions – role of medical imaging Artificial muscles for treating severe incontinence Applying physics in medicine: Benefitting patients | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | http://www.bmc.unibas.ch/education/ETH_Zurich.phtml login and password to be provided during the lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Students from other departments are very welcome to join and gain insight into a variety of sophisticated techniques for the benefit of patients. No special knowledge is required. Nevertheless, gaps in basic physical knowledge will require additional efforts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0059-00L | Nanoscale Molecular Imaging | W | 3 KP | 2G | N. Kumar, R. Zenobi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course will provide fundamental knowledge about the principal analytical techniques for nanoscale molecular imaging. In addition to the basic concepts, students will also learn the application of advanced molecular characterization tools to solve problems in the chemical, biological and material sciences. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | This course will provide fundamental knowledge about the principal analytical techniques for nanoscale molecular imaging. In addition to the basic concepts, students will also learn the application of advanced molecular characterization tools to solve problems in the chemical, biological and material sciences. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Nanoscale molecular imaging using fluorescence spectroscopy: - Stimulated emission depletion microscopy (STED) - Saturated structured illumination microscopy (SSIM) - Direct stochastic optical reconstruction microscopy (dSTORM) - Photoactivated localization microscopy (PALM) Nanoscale molecular imaging using Raman spectroscopy: - Scanning near-field optical microscopy (aperture SNOM) - Tip-enhanced Raman spectroscopy (TERS): Based on atomic force microscopy (AFM) & scanning tunnelling microscopy (STM) Nanoscale molecular imaging using infra-red (IR) spectroscopy: - Nanoscale Fourier-transform infrared spectroscopy (Nano-FTIR) - Photo-induced force microscopy (AFM-IR) Nanoscale molecular imaging using ions: - Nanoscale secondary ion mass spectrometry (NanoSIMS) Single molecule imaging techniques: - Scanning probe microscopy: STM & AFM - Ultrahigh vacuum (UHV)-TERS - Cryogenic electron microscopy (Cryo-EM) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes will be made available online. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Information about relevant literature will be available in the lecture & in the lecture notes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
|
Seite 2 von 2
Alle