Search result: Catalogue data in Autumn Semester 2023

Biochemistry - Chemical Biology Master Information
Electives
NumberTitleTypeECTSHoursLecturers
327-0312-00LMaterials Synthesis I - PolymersW4 credits4GA. Anastasaki, D. Opris
AbstractThe course teaches the basics and terminology of polymer synthesis. To synthesize various polymeric materials, different polymerization techniques are required. This course will introduce representative polymerization methodologies and will discuss how they operate in order to yield materials with enhanced polymeric characteristics. 
Learning objective1) The students will be able to recognize different polymer types and associate them with their chemical structure and properties (i.e. rubber elasticity, glass transition temperature, etc.)
2) The students will become familiar with various synthetic methods to produce polymers of different architectures and topologies
3) The students will be exposed to different characterization methods (e.g. size exclusion chromatography, mass-spectrometry, nuclear magnetic resonance) that are necessary to confirm the successful synthesis and structure of a polymer
4) The students will understand the mechanism of selected polymerization methodologies
5) The students will be introduced to state-of-the-art polymer synthesis and recent literature examples will be critically discussed
Contentconventional chain growth polymerization, living chain growth polymerization, step growth polymerization, polymeric architectures, molecular weight determination methods, polymer properties, polymerization mechanisms, polymer characterization methods
Lecture notesLecture slides with references to further literature will be available on Moodle
LiteratureL. Mandelkern „An Introduction to Macromolecules“
J. M. G. Cowie “Polymers: Chemistry and Physics of Modern Materials
publications mentioned on the slides
636-0108-00LBiological Engineering and BiotechnologyW4 credits3VM. Fussenegger
AbstractBiological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.
Learning objectiveBiological Engineering and Biotechnology will cover the latest biotechnological advances as well as their industrial implementation to engineer mammalian cells for use in human therapy. This lecture will provide forefront insights into key scientific aspects and the main points in industrial decision-making to bring a therapeutic from target to market.
Content1. Insight Into The Mammalian Cell Cycle. Cycling, The Balance Between Proliferation and Cancer - Implications For Biopharmaceutical Manufacturing. 2. The Licence To Kill. Apoptosis Regulatory Networks - Engineering of Survival Pathways To Increase Robustness of Production Cell Lines. 3. Everything Under Control I. Regulated Transgene Expression in Mammalian Cells - Facts and Future. 4. Secretion Engineering. The Traffic Jam getting out of the Cell. 5. From Target To Market. An Antibody's Journey From Cell Culture to The Clinics. 6. Biology and Malign Applications. Do Life Sciences Enable the Development of Biological Weapons? 7. Functional Food. Enjoy your Meal! 8. Industrial Genomics. Getting a Systems View on Nutrition and Health - An Industrial Perspective. 9. IP Management - Food Technology. Protecting Your Knowledge For Business. 10. Biopharmaceutical Manufacturing I. Introduction to Process Development. 11. Biopharmaceutical Manufacturing II. Up- stream Development. 12. Biopharmaceutical Manufacturing III. Downstream Development. 13. Biopharmaceutical Manufacturing IV. Pharma Development.
Lecture notesHandout during the course.
529-0233-01LOrganic Synthesis: Methods and Strategies Information W6 credits3GE. M. Carreira
AbstractThe complex relation between structural analysis, methods leading to desired transformations, and insight into reaction mechanisms is exemplified. Relations between retrosynthetic analysis of target structures, synthetic methods and their combination in a synthetic strategy.
Learning objectiveExtension and deepening of the knowledge in organic synthesis and the principles of structure and reactivity.
ContentConcepts of the planning of organic synthesis (strategy and tactics), retrosynthetic analysis. Structure-reactivity relation in the context of the synthesis of complex molecules.
LiteratureK. C. Nicolaou, E. J. Sorensen, Classics in Total Synthesis, Wiley-VCH 1996.
K. C. Nicolaou, S. A. Snyder, Classics in Total Synthesis II, Wiley-VCH 2003.
K. C. Nicolaou, J. Chen, Classics in Total Synthesis III, Wiley-VCH 2011.
Prerequisites / NoticeOC I-IV
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesfostered
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationassessed
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationassessed
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
551-1407-00LRNA Biology Lecture Series I: Transcription & Processing & Translation
Does not take place this semester.
W4 credits2VF. Allain, N. Ban, S. Jonas, U. Kutay, further lecturers
AbstractThis course covers aspects of RNA biology related to gene expression at the posttranscriptional level. These include RNA transcription, processing, alternative splicing, editing, export and translation.
Learning objectiveThe students should obtain an understanding of these processes, which are at work during gene expression.
ContentTranscription & 3'end formation ; splicing, alternative splicing, RNA editing; the ribosome & translation, translation regulation, RNP biogenesis & nuclear export, mRNA surveillance & mRNA turnover; signal transduction & RNA.
Prerequisites / NoticeBasic knowledge of cell and molecular biology.
529-0132-00LInorganic Chemistry III: Organometallic Chemistry and Homogeneous CatalysisW4 credits3GM. Bezdek, C. Copéret
AbstractFundamental aspects of the organometallic chemistry of the transition elements. Mechanistic homogeneous catalysis including oxidative additions, reductive eliminations and insertion reactions. Catalytic hydrogenation, carbonylation, C-C bond-forming and related reactions.
Learning objectiveTowards an understanding of the fundamental coordination-chemical and mechanistic aspects of transition-metal chemistry relevant to homogeneous catalysis.
ContentFundamental aspects of the organometallic chemistry ot the transition elements. Mechanistic homogeneous catalysis including oxidative additions, reductive eliminations and insertion reactions. Catalytic hydrogenation, carbonylation, C-C bond-forming and related reactions.
551-1409-00LRNA Biology Lecture Series II: Non-Coding RNAs: Biology and TherapeuticsW4 credits2VJ. Hall, M. Stoffel, further lecturers
AbstractThis course covers aspects of RNA biology related to the functions of non-coding RNAs as well as their use as drugs to treat diseases.
Learning objectiveThe students should get familiar with the wide array of roles, which non-coding RNAs play in cellular functions.
ContentMicro RNAs; computational approaches to miRNAs; micro RNA function in metabolism; viruses and viral RNAs; nucleic acid-based drugs; ncRNA-mediated genome regulation; epigenetic programming of genome remodelling in ciliates; telomerase and telomeres; tRNA biology. http://www.nccr-rna-and-disease.ch/tiki-index.php?page=LectureSeries
Prerequisites / NoticeBasic knowledge of cell and molecular biology.
529-0243-01LTransition Metal Catalysis: From Mechanisms to Applications Information W6 credits3GB. Morandi
AbstractDetailed discussion of selected modern transition metal catalyzed reactions from a synthetic and mechanistic viewpoint
Learning objectiveUnderstanding and critical evaluation of current research in transition metal catalysis. Design of mechanistic experiments to elucidate reaction mechanisms. Synthetic relevance of transition metal catalysis. Students will also learn about writing an original research proposal during a workshop.
ContentDetailed discussion of selected modern transition metal catalyzed reactions from a synthetic and mechanistic viewpoint. Synthetic applications of these reactions. Introduction and application of tools for the elucidation of mechanisms. Selected examples of topics include: C-H activation, C-O activation, C-C activation, redox active ligands, main group redox catalysis, bimetallic catalysis.
Lecture notesLecture slides will be provided online. A Handout summarizing important concepts in organometallic and physical organic chemistry will also be provided. Useful references and handouts will also be provided during the workshop.

Slides will be uploaded 1-2 days before each lecture on http://morandi.ethz.ch/education.html
LiteraturePrimary literature and review articles will be cited during the course.

The following textbooks can provide useful support for the course:

- Anslyn and Dougherty, Modern Physical Organic Chemistry, 1st Ed., University Science Books.
- Crabtree R., The Organometallic Chemistry of the Transition Metals, John Wiley & Sons, Inc.
- Hartwig J., Organotransition Metal Chemistry: From Bonding to Catalysis, University Science Books.
- J. P. Collman, L. S. Hegedus, J. R. Norton, R. G. Finke, Principles and Applications of Organotransition Metal Chemistry.
Prerequisites / NoticeRequired level: Courses in organic and physical chemistry (kinetics in particular) of the first and second year as well as ACI and III
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Personal CompetenciesAdaptability and Flexibilityassessed
Creative Thinkingassessed
Critical Thinkingassessed
Semester Theses
NumberTitleTypeECTSHoursLecturers
529-0260-00LResearch Project I Restricted registration - show details O16 credits34ALecturers
AbstractIn a research project students extend their knowledge in a particular field, get acquainted with the scientific way of working, and learn to work on an actual research topic. Research projects are carried out in a core or optional subject area as chosen by the student.
Learning objectiveStudents are accustomed to scientific work and they get to know one specific research field.
ContentThis laboratory project is organised during the spring vacation before the sixth semester. The participant can choose his topic from the list of projects suggested. Main emphasis during this research work is to get experience in using different engineering tools and evaluation and the interpretation of the results. Those are presented as a scientific report.
529-0265-00LResearch Project II Restricted registration - show details O16 credits34ALecturers
AbstractIn a research project students extend their knowledge in a particular field, get acquainted with the scientific way of working, and learn to work on an actual research topic. Research projects are carried out in a core or optional subject area as chosen by the student.
Learning objectiveStudents are accustomed to scientific work and they get to know one specific research field.
ContentThis laboratory project is organised during the spring vacation before the sixth semester. The participant can choose his topic from the list of projects suggested. Main emphasis during this research work is to get experience in using different engineering tools and evaluation and the interpretation of the results. Those are presented as a scientific report.
Science in Perspective
» Recommended Science in Perspective (Type B) for D-CHAB
» see Science in Perspective: Language Courses ETH/UZH
» see Science in Perspective: Type A: Enhancement of Reflection Capability
Master's Thesis
NumberTitleTypeECTSHoursLecturers
529-0080-00LMaster's Thesis Restricted registration - show details
Only students who fulfill the following criteria are allowed to begin with their Master's thesis:
a. successful completion of the Bachelor's programme;
b. fulfilling of any additional requirements necessary to gain admission to the Master's programme.

Duration of the Master's Thesis 26 weeks.
O32 credits69DLecturers
AbstractIn the Master's thesis students prove their ability to independent, structured and scientific working. The Master's thesis is usually carried out in a core or optional subject area as chosen by the student.
Learning objectiveIn the Master's Thesis students prove their ability to independent, structured and scientific working.
  • First page Previous page Page  2  of  2     All