Suchergebnis: Katalogdaten im Herbstsemester 2019
Informatik Master ![]() | ||||||
![]() | ||||||
![]() ![]() | ||||||
![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
252-0535-00L | Advanced Machine Learning ![]() | W | 8 KP | 3V + 2U + 2A | J. M. Buhmann | |
Kurzbeschreibung | Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects. | |||||
Lernziel | Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data. | |||||
Inhalt | The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data. Topics covered in the lecture include: Fundamentals: What is data? Bayesian Learning Computational learning theory Supervised learning: Ensembles: Bagging and Boosting Max Margin methods Neural networks Unsupservised learning: Dimensionality reduction techniques Clustering Mixture Models Non-parametric density estimation Learning Dynamical Systems | |||||
Skript | No lecture notes, but slides will be made available on the course webpage. | |||||
Literatur | C. Bishop. Pattern Recognition and Machine Learning. Springer 2007. R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley & Sons, second edition, 2001. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, 2001. L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer, 2004. | |||||
Voraussetzungen / Besonderes | The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution. PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points. | |||||
252-1414-00L | System Security ![]() | W | 7 KP | 2V + 2U + 2A | S. Capkun, A. Perrig | |
Kurzbeschreibung | The first part of the lecture covers individual system aspects starting with tamperproof or tamper-resistant hardware in general over operating system related security mechanisms to application software systems, such as host based intrusion detection systems. In the second part, the focus is on system design and methodologies for building secure systems. | |||||
Lernziel | In this lecture, students learn about the security requirements and capabilities that are expected from modern hardware, operating systems, and other software environments. An overview of available technologies, algorithms and standards is given, with which these requirements can be met. | |||||
Inhalt | The first part of the lecture covers individual system's aspects starting with tamperproof or tamperresistant hardware in general over operating system related security mechanisms to application software systems such as host based intrusion detetction systems. The main topics covered are: tamper resistant hardware, CPU support for security, protection mechanisms in the kernel, file system security (permissions / ACLs / network filesystem issues), IPC Security, mechanisms in more modern OS, such as Capabilities and Zones, Libraries and Software tools for security assurance, etc. In the second part, the focus is on system design and methodologies for building secure systems. Topics include: patch management, common software faults (buffer overflows, etc.), writing secure software (design, architecture, QA, testing), compiler-supported security, language-supported security, logging and auditing (BSM audit, dtrace, ...), cryptographic support, and trustworthy computing (TCG, SGX). Along the lectures, model cases will be elaborated and evaluated in the exercises. | |||||
263-2800-00L | Design of Parallel and High-Performance Computing ![]() ![]() | W | 8 KP | 3V + 2U + 2A | M. Püschel, T. Ben Nun | |
Kurzbeschreibung | Advanced topics in parallel / concurrent programming. | |||||
Lernziel | Understand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large concurrent software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore. | |||||
263-3010-00L | Big Data ![]() ![]() | W | 8 KP | 3V + 2U + 2A | G. Fourny | |
Kurzbeschreibung | The key challenge of the information society is to turn data into information, information into knowledge, knowledge into value. This has become increasingly complex. Data comes in larger volumes, diverse shapes, from different sources. Data is more heterogeneous and less structured than forty years ago. Nevertheless, it still needs to be processed fast, with support for complex operations. | |||||
Lernziel | This combination of requirements, together with the technologies that have emerged in order to address them, is typically referred to as "Big Data." This revolution has led to a completely new way to do business, e.g., develop new products and business models, but also to do science -- which is sometimes referred to as data-driven science or the "fourth paradigm". Unfortunately, the quantity of data produced and available -- now in the Zettabyte range (that's 21 zeros) per year -- keeps growing faster than our ability to process it. Hence, new architectures and approaches for processing it were and are still needed. Harnessing them must involve a deep understanding of data not only in the large, but also in the small. The field of databases evolves at a fast pace. In order to be prepared, to the extent possible, to the (r)evolutions that will take place in the next few decades, the emphasis of the lecture will be on the paradigms and core design ideas, while today's technologies will serve as supporting illustrations thereof. After visiting this lecture, you should have gained an overview and understanding of the Big Data landscape, which is the basis on which one can make informed decisions, i.e., pick and orchestrate the relevant technologies together for addressing each business use case efficiently and consistently. | |||||
Inhalt | This course gives an overview of database technologies and of the most important database design principles that lay the foundations of the Big Data universe. We take the monolithic, one-machine relational stack from the 1970s, smash it down and rebuild it on top of large clusters: starting with distributed storage, and all the way up to syntax, models, validation, processing, indexing, and querying. A broad range of aspects is covered with a focus on how they fit all together in the big picture of the Big Data ecosystem. No data is harmed during this course, however, please be psychologically prepared that our data may not always be in third normal form. - physical storage: distributed file systems (HDFS), object storage(S3), key-value stores - logical storage: document stores (MongoDB), column stores (HBase), graph databases (neo4j), data warehouses (ROLAP) - data formats and syntaxes (XML, JSON, RDF, Turtle, CSV, XBRL, YAML, protocol buffers, Avro) - data shapes and models (tables, trees, graphs, cubes) - type systems and schemas: atomic types, structured types (arrays, maps), set-based type systems (?, *, +) - an overview of functional, declarative programming languages across data shapes (SQL, XQuery, JSONiq, Cypher, MDX) - the most important query paradigms (selection, projection, joining, grouping, ordering, windowing) - paradigms for parallel processing, two-stage (MapReduce) and DAG-based (Spark) - resource management (YARN) - what a data center is made of and why it matters (racks, nodes, ...) - underlying architectures (internal machinery of HDFS, HBase, Spark, neo4j) - optimization techniques (functional and declarative paradigms, query plans, rewrites, indexing) - applications. Large scale analytics and machine learning are outside of the scope of this course. | |||||
Literatur | Papers from scientific conferences and journals. References will be given as part of the course material during the semester. | |||||
Voraussetzungen / Besonderes | This course, in the autumn semester, is only intended for: - Computer Science students - Data Science students - CBB students with a Computer Science background Mobility students in CS are also welcome and encouraged to attend. If you experience any issue while registering, please contact the study administration and you will be gladly added. For students of all other departements interested in this fascinating topic: I would love to have you visit my lectures as well! So there is a series of two courses specially designed for you and offered in Spring 2020: - "Information Systems for Engineers" (SQL, relational databases) - "Big Data for Engineers" (similar to Big Data, but adapted for non Computer Scientists). There is no hard dependency, so you can either attend both in the same semester, or one after the other. | |||||
263-4640-00L | Network Security ![]() | W | 7 KP | 2V + 2U + 2A | A. Perrig, S. Frei | |
Kurzbeschreibung | Some of today's most damaging attacks on computer systems involve exploitation of network infrastructure, either as the target of attack or as a vehicle to attack end systems. This course provides an in-depth study of network attack techniques and methods to defend against them. | |||||
Lernziel | - Students are familiar with fundamental network security concepts. - Students can assess current threats that Internet services and networked devices face, and can evaluate appropriate countermeasures. - Students can identify and assess known vulnerabilities in a software system that is connected to the Internet (through analysis and penetration testing tools). - Students have an in-depth understanding of a range of important security technologies. - Students learn how formal analysis techniques can help in the design of secure networked systems. | |||||
Inhalt | The course will cover topics spanning five broad themes: (1) network defense mechanisms such as secure routing protocols, TLS, anonymous communication systems, network intrusion detection systems, and public-key infrastructures; (2) network attacks such as denial of service (DoS) and distributed denial-of-service (DDoS) attacks; (3) analysis and inference topics such as network forensics and attack economics; (4) formal analysis techniques for verifying the security properties of network architectures; and (5) new technologies related to next-generation networks. | |||||
Voraussetzungen / Besonderes | This lecture is intended for students with an interest in securing Internet communication services and network devices. Students are assumed to have knowledge in networking as taught in a Communication Networks lecture. The course will involve a course project and some smaller programming projects as part of the homework. Students are expected to have basic knowledge in network programming in a programming language such as C/C++, Go, or Python. | |||||
263-5902-00L | Computer Vision ![]() | W | 7 KP | 3V + 1U + 2A | M. Pollefeys, V. Ferrari, L. Van Gool | |
Kurzbeschreibung | The goal of this course is to provide students with a good understanding of computer vision and image analysis techniques. The main concepts and techniques will be studied in depth and practical algorithms and approaches will be discussed and explored through the exercises. | |||||
Lernziel | The objectives of this course are: 1. To introduce the fundamental problems of computer vision. 2. To introduce the main concepts and techniques used to solve those. 3. To enable participants to implement solutions for reasonably complex problems. 4. To enable participants to make sense of the computer vision literature. | |||||
Inhalt | Camera models and calibration, invariant features, Multiple-view geometry, Model fitting, Stereo Matching, Segmentation, 2D Shape matching, Shape from Silhouettes, Optical flow, Structure from motion, Tracking, Object recognition, Object category recognition | |||||
Voraussetzungen / Besonderes | It is recommended that students have taken the Visual Computing lecture or a similar course introducing basic image processing concepts before taking this course. | |||||
636-0007-00L | Computational Systems Biology ![]() | W | 6 KP | 3V + 2U | J. Stelling | |
Kurzbeschreibung | Study of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification). | |||||
Lernziel | The aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks. | |||||
Inhalt | Biology has witnessed an unprecedented increase in experimental data and, correspondingly, an increased need for computational methods to analyze this data. The explosion of sequenced genomes, and subsequently, of bioinformatics methods for the storage, analysis and comparison of genetic sequences provides a prominent example. Recently, however, an additional area of research, captured by the label "Systems Biology", focuses on how networks, which are more than the mere sum of their parts' properties, establish biological functions. This is essentially a task of reverse engineering. The aim of this course is to provide an introductory overview of corresponding computational methods for the modeling, simulation and analysis of biological networks. We will start with an introduction into the basic units, functions and design principles that are relevant for biology at the level of individual cells. Making extensive use of example systems, the course will then focus on methods and algorithms that allow for the investigation of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods. | |||||
Skript | http://www.csb.ethz.ch/education/lectures.html | |||||
Literatur | U. Alon, An introduction to systems biology. Chapman & Hall / CRC, 2006. Z. Szallasi et al. (eds.), System modeling in cellular biology. MIT Press, 2010. B. Ingalls, Mathematical modeling in systems biology: an introduction. MIT Press, 2013 | |||||
![]() ![]() ![]() | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
252-0286-00L | System Construction ![]() ![]() Number of participants limited to 30. | W | 5 KP | 2V + 1U + 1A | F. Friedrich Wicker | |
Kurzbeschreibung | Main goal is teaching knowledge and skills needed for building custom operating systems and runtime environments. Relevant topics are studied at the example of sufficiently simple systems that have been built at our Institute in the past, ranging from purpose-oriented single processor real-time systems up to generic system kernels on multi-core hardware. | |||||
Lernziel | The lecture's main goal is teaching of knowledge and skills needed for building custom operating systems and runtime environments. The lecture intends to supplement more abstract views of software construction, and to contribute to a better understanding of "how it really works" behind the scenes. | |||||
Inhalt | Case Study 1: Embedded System - Safety-critical and fault-tolerant monitoring system - Based on an auto-pilot system for helicopters Case Study 2: Multi-Processor Operating System - Universal operating system for symmetric multiprocessors - Shared memory approach - Based on Language-/System Codesign (Active Oberon / A2) Case Study 3: Custom designed Single-Processor System - RISC Single-processor system designed from scratch - Hardware on FPGA - Graphical workstation OS and compiler (Project Oberon) Case Study 4: Custom-designed Multi-Processor System - Special purpose heterogeneous system on a chip - Masssively parallel hard- and software architecture based on message passing - Focus: dataflow based applications | |||||
Skript | Lecture material will be made available from the lecture homepage. | |||||
252-0543-01L | Computer Graphics ![]() | W | 7 KP | 3V + 2U + 1A | M. Gross, M. Papas | |
Kurzbeschreibung | This course covers some of the fundamental concepts of computer graphics generation of photorealistic images from digital representations of 3D scenes and image-based methods for recovering digital scene representations from captured images. | |||||
Lernziel | At the end of the course the students will be able to build a rendering system. The students will study the basic principles of rendering and image synthesis. In addition, the course is intended to stimulate the students' curiosity to explore the field of computer graphics in subsequent courses or on their own. | |||||
Inhalt | This course covers fundamental concepts of modern computer graphics. Students will learn about 3D object representations and the details of how to generate photorealistic images from digital representations of 3D scenes. Starting with an introduction to 3D shape modeling, geometry representation and texture mapping, we will move on to the physics of light transport, acceleration structures, appearance modeling and Monte Carlo integration. We will apply these principles for computing light transport of direct and global illumination due to surfaces and participating media. We will end with an overview of modern image-based capture and image synthesis methods, covering topics such as geometry and material capture, light-fields and depth-image based rendering. | |||||
Skript | no | |||||
Literatur | Books: High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting Multiple view geometry in computer vision Physically Based Rendering: From Theory to Implementation | |||||
Voraussetzungen / Besonderes | Prerequisites: Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended. The programming assignments will be in C++. This will not be taught in the class. | |||||
252-0546-00L | Physically-Based Simulation in Computer Graphics ![]() | W | 5 KP | 2V + 1U + 1A | V. da Costa de Azevedo, B. Solenthaler | |
Kurzbeschreibung | Die Vorlesung gibt eine Einführung in das Gebiet der physikalisch basierten Animation in der Computer Graphik und einen Überblick über fundamentale Methoden und Algorithmen. In den praktischen Übungen werden drei Aufgabenblätter in kleinen Gruppen bearbeitet. Zudem sollen in einem Programmierprojekt die Vorlesungsinhalte in einem 3D Spiel oder einer vergleichbaren Anwendung umgesetzt werden. | |||||
Lernziel | Die Vorlesung gibt eine Einführung in das Gebiet der physikalisch basierten Animation in der Computer Graphik und einen Überblick über fundamentale Methoden und Algorithmen. In den praktischen Übungen werden drei Aufgabenblätter in kleinen Gruppen bearbeitet. Zudem sollen in einem Programmierprojekt die Vorlesungsinhalte in einem 3D Spiel oder einer vergleichbaren Anwendung umgesetzt werden. | |||||
Inhalt | In der Vorlesung werden Themen aus dem Gebiet der physikalisch-basierten Modellierung wie Partikel-Systeme, Feder-Masse Modelle, die Methoden der Finiten Differenzen und der Finiten Elemente behandelt. Diese Methoden und Techniken werden verwendet um deformierbare Objekte oder Flüssigkeiten zu simulieren mit Anwendungen in Animationsfilmen, 3D Computerspielen oder medizinischen Systemen. Es werden auch Themen wie Starrkörperdynamik, Kollisionsdetektion und Charakteranimation behandelt. | |||||
Voraussetzungen / Besonderes | Basiskenntnisse in Analysis und Physik, Algorithmen und Datenstrukturen und der Programmierung in C++. Kenntnisse auf den Gebieten Numerische Mathematik sowie Gewoehnliche und Partielle Differentialgleichungen sind von Vorteil, werden aber nicht vorausgesetzt. | |||||
252-0811-00L | Applied Security Laboratory ![]() In the Master Programme max. 10 credits can be accounted by Labs on top of the Interfocus Courses. Additional Labs will be listed on the Addendum. | W | 8 KP | 7P | D. Basin | |
Kurzbeschreibung | Hands-on course on applied aspects of information security. Applied information security, operating system security, OS hardening, computer forensics, web application security, project work, design, implementation, and configuration of security mechanisms, risk analysis, system review. | |||||
Lernziel | The Applied Security Laboratory addresses four major topics: operating system security (hardening, vulnerability scanning, access control, logging), application security with an emphasis on web applications (web server setup, common web exploits, authentication, session handling, code security), computer forensics, and risk analysis and risk management. | |||||
Inhalt | This course emphasizes applied aspects of Information Security. The students will study a number of topics in a hands-on fashion and carry out experiments in order to better understand the need for secure implementation and configuration of IT systems and to assess the effectivity and impact of security measures. This part is based on a book and virtual machines that include example applications, questions, and answers. The students will also complete an independent project: based on a set of functional requirements, they will design and implement a prototypical IT system. In addition, they will conduct a thorough security analysis and devise appropriate security measures for their systems. Finally, they will carry out a technical and conceptual review of another system. All project work will be performed in teams and must be properly documented. | |||||
Skript | The course is based on the book "Applied Information Security - A Hands-on Approach". More information: http://www.infsec.ethz.ch/appliedlabbook | |||||
Literatur | Recommended reading includes: * Pfleeger, Pfleeger: Security in Computing, Third Edition, Prentice Hall, available online from within ETH * Garfinkel, Schwartz, Spafford: Practical Unix & Internet Security, O'Reilly & Associates. * Various: OWASP Guide to Building Secure Web Applications, available online * Huseby: Innocent Code -- A Security Wake-Up Call for Web Programmers, John Wiley & Sons. * Scambray, Schema: Hacking Exposed Web Applications, McGraw-Hill. * O'Reilly, Loukides: Unix Power Tools, O'Reilly & Associates. * Frisch: Essential System Administration, O'Reilly & Associates. * NIST: Risk Management Guide for Information Technology Systems, available online as PDF * BSI: IT-Grundschutzhandbuch, available online | |||||
Voraussetzungen / Besonderes | * The lab allows flexible working since there are only few mandatory meetings during the semester. * The lab covers a variety of different techniques. Thus, participating students should have a solid foundation in the following areas: information security, operating system administration (especially Unix/Linux), and networking. Students are also expected to have a basic understanding of HTML, PHP, JavaScript, and MySQL because several examples are implemented in these languages. * Students must be prepared to spend more than three hours per week to complete the lab assignments and the project. This applies particularly to students who do not meet the recommended requirements given above. Successful participants of the course receive 8 credits as compensation for their effort. * All participants must sign the lab's charter and usage policy during the introduction lecture. | |||||
252-0817-00L | Distributed Systems Laboratory Im Masterstudium können zusätzlich zu den Vertiefungsübergreifenden Fächern nur max. 10 Kreditpunkte über Laboratorien erarbeitet werden. Diese Labs gelten nur für das Masterstudium. Weitere Laboratorien werden auf dem Beiblatt aufgeführt. | W | 10 KP | 9P | G. Alonso, F. Mattern, T. Roscoe, A. Singla, R. Wattenhofer, C. Zhang | |
Kurzbeschreibung | This course involves the participation in a substantial development and/or evaluation project involving distributed systems technology. There are projects available in a wide range of areas: from web services to ubiquitous computing including wireless networks, ad-hoc networks, RFID, and distributed applications on smartphones. | |||||
Lernziel | Gain hands-on-experience with real products and the latest technology in distributed systems. | |||||
Inhalt | This course involves the participation in a substantial development and/or evaluation project involving distributed systems technology. There are projects available in a wide range of areas: from web services to ubiquitous computing including as well wireless networks, ad-hoc networks, and distributed application on smartphones. The goal of the project is for the students to gain hands-on-experience with real products and the latest technology in distributed systems. There is no lecture associated to the course. For information of the course or projects available, see https://www.dsl.inf.ethz.ch/ or contact Prof. Mattern, Prof. Wattenhofer, Prof. Roscoe or Prof. G. Alonso. | |||||
252-1407-00L | Algorithmic Game Theory ![]() | W | 7 KP | 3V + 2U + 1A | P. Penna | |
Kurzbeschreibung | Game theory provides a formal model to study the behavior and interaction of self-interested users and programs in large-scale distributed computer systems without central control. The course discusses algorithmic aspects of game theory. | |||||
Lernziel | Learning the basic concepts of game theory and mechanism design, acquiring the computational paradigm of self-interested agents, and using these concepts in the computational and algorithmic setting. | |||||
Inhalt | The Internet is a typical example of a large-scale distributed computer system without central control, with users that are typically only interested in their own good. For instance, they are interested in getting high bandwidth for themselves, but don't care about others, and the same is true for computational load or download rates. Game theory provides a particularly well-suited model for the behavior and interaction of such selfish users and programs. Classic game theory dates back to the 1930s and typically does not consider algorithmic aspects at all. Only a few years back, algorithms and game theory have been considered together, in an attempt to reconcile selfish behavior of independent agents with the common good. This course discusses algorithmic aspects of game-theoretic models, with a focus on recent algorithmic and mathematical developments. Rather than giving an overview of such developments, the course aims to study selected important topics in depth. Outline: - Introduction to classic game-theoretic concepts. - Existence of stable solutions (equilibria), algorithms for computing equilibria, computational complexity. - Speed of convergence of natural game playing dynamics such as best-response dynamics or regret minimization. - Techniques for bounding the quality-loss due to selfish behavior versus optimal outcomes under central control (a.k.a. the 'Price of Anarchy'). - Design and analysis of mechanisms that induce truthful behavior or near-optimal outcomes at equilibrium. - Selected current research topics, such as Google's Sponsored Search Auction, the U.S. FCC Spectrum Auction, Kidney Exchange. | |||||
Skript | Lecture notes will be usually posted on the website shortly after each lecture. | |||||
Literatur | "Algorithmic Game Theory", edited by N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, Cambridge University Press, 2008; "Game Theory and Strategy", Philip D. Straffin, The Mathematical Association of America, 5th printing, 2004 Several copies of both books are available in the Computer Science library. | |||||
Voraussetzungen / Besonderes | Audience: Although this is a Computer Science course, we encourage the participation from all students who are interested in this topic. Requirements: You should enjoy precise mathematical reasoning. You need to have passed a course on algorithms and complexity. No knowledge of game theory is required. | |||||
252-1411-00L | Security of Wireless Networks ![]() | W | 5 KP | 2V + 1U + 1A | S. Capkun, K. Kostiainen | |
Kurzbeschreibung | Core Elements: Wireless communication channel, Wireless network architectures and protocols, Attacks on wireless networks, Protection techniques. | |||||
Lernziel | After this course, the students should be able to: describe and classify security goals and attacks in wireless networks; describe security architectures of the following wireless systems and networks: 802.11, GSM/UMTS, RFID, ad hoc/sensor networks; reason about security protocols for wireless network; implement mechanisms to secure 802.11 networks. | |||||
Inhalt | Wireless channel basics. Wireless electronic warfare: jamming and target tracking. Basic security protocols in cellular, WLAN and multi-hop networks. Recent advances in security of multi-hop networks; RFID privacy challenges and solutions. | |||||
252-1425-00L | Geometry: Combinatorics and Algorithms ![]() | W | 6 KP | 2V + 2U + 1A | B. Gärtner, M. Hoffmann, M. Wettstein | |
Kurzbeschreibung | Geometric structures are useful in many areas, and there is a need to understand their structural properties, and to work with them algorithmically. The lecture addresses theoretical foundations concerning geometric structures. Central objects of interest are triangulations. We study combinatorial (Does a certain object exist?) and algorithmic questions (Can we find a certain object efficiently?) | |||||
Lernziel | The goal is to make students familiar with fundamental concepts, techniques and results in combinatorial and computational geometry, so as to enable them to model, analyze, and solve theoretical and practical problems in the area and in various application domains. In particular, we want to prepare students for conducting independent research, for instance, within the scope of a thesis project. | |||||
Inhalt | Planar and geometric graphs, embeddings and their representation (Whitney's Theorem, canonical orderings, DCEL), polygon triangulations and the art gallery theorem, convexity in R^d, planar convex hull algorithms (Jarvis Wrap, Graham Scan, Chan's Algorithm), point set triangulations, Delaunay triangulations (Lawson flips, lifting map, randomized incremental construction), Voronoi diagrams, the Crossing Lemma and incidence bounds, line arrangements (duality, Zone Theorem, ham-sandwich cuts), 3-SUM hardness, counting planar triangulations. | |||||
Skript | yes | |||||
Literatur | Mark de Berg, Marc van Kreveld, Mark Overmars, Otfried Cheong, Computational Geometry: Algorithms and Applications, Springer, 3rd ed., 2008. Satyan Devadoss, Joseph O'Rourke, Discrete and Computational Geometry, Princeton University Press, 2011. Stefan Felsner, Geometric Graphs and Arrangements: Some Chapters from Combinatorial Geometry, Teubner, 2004. Jiri Matousek, Lectures on Discrete Geometry, Springer, 2002. Takao Nishizeki, Md. Saidur Rahman, Planar Graph Drawing, World Scientific, 2004. | |||||
Voraussetzungen / Besonderes | Prerequisites: The course assumes basic knowledge of discrete mathematics and algorithms, as supplied in the first semesters of Bachelor Studies at ETH. Outlook: In the following spring semester there is a seminar "Geometry: Combinatorics and Algorithms" that builds on this course. There are ample possibilities for Semester-, Bachelor- and Master Thesis projects in the area. | |||||
263-2210-00L | Computer Architecture ![]() | W | 8 KP | 6G + 1A | O. Mutlu | |
Kurzbeschreibung | Computer architecture is the science and art of selecting and interconnecting hardware components to create a computer that meets functional, performance and cost goals. This course introduces the basic components of a modern computing system (processors, memory, interconnects, storage). The course takes a hardware/software cooperative approach to understanding and evaluating computing systems. | |||||
Lernziel | We will learn the fundamental concepts of the different parts of modern computing systems, as well as the latest trends by exploring the recent research in Industry and Academia. We will extensively cover memory technologies (including DRAM and new Non-Volatile Memory technologies), memory scheduling, parallel computing systems (including multicore processors and GPUs), heterogeneous computing, processing-in-memory, interconnection networks, specialized systems for major data-intensive workloads (e.g. graph processing, bioinformatics, machine learning), etc. | |||||
Inhalt | The principles presented in the lecture are reinforced in the laboratory through the design and simulation of a register transfer (RT) implementation of a MIPS-like pipelined processor in System Verilog. In addition, we will develop a cycle-accurate simulator of a similar processor in C, and we will use this simulator to explore different design options. | |||||
Skript | All the materials (including lecture slides) will be provided on the course website: https://safari.ethz.ch/architecture/ The video recordings of the lectures are expected to be made available after lectures. | |||||
Literatur | We will provide required and recommended readings in every lecture. They will mainly consist of research papers presented in major Computer Architecture and related conferences and journals. | |||||
Voraussetzungen / Besonderes | Design of Digital Circuits | |||||
263-2400-00L | Reliable and Interpretable Artificial Intelligence ![]() | W | 5 KP | 2V + 1U + 1A | M. Vechev | |
Kurzbeschreibung | Creating reliable and explainable probabilistic models is a fundamental challenge to solving the artificial intelligence problem. This course covers some of the latest and most exciting advances that bring us closer to constructing such models. | |||||
Lernziel | The main objective of this course is to expose students to the latest and most exciting research in the area of explainable and interpretable artificial intelligence, a topic of fundamental and increasing importance. Upon completion of the course, the students should have mastered the underlying methods and be able to apply them to a variety of problems. To facilitate deeper understanding, an important part of the course will be a group hands-on programming project where students will build a system based on the learned material. | |||||
Inhalt | The course covers some of the latest research (over the last 2-3 years) underlying the creation of safe, trustworthy, and reliable AI (more information here: https://www.sri.inf.ethz.ch/teaching/riai2019): * Adversarial Attacks on Deep Learning (noise-based, geometry attacks, sound attacks, physical attacks, autonomous driving, out-of-distribution) * Defenses against attacks * Combining gradient-based optimization with logic for encoding background knowledge * Complete Certification of deep neural networks via automated reasoning (e.g., via numerical abstractions, mixed-integer solvers). * Probabilistic certification of deep neural networks * Training deep neural networks to be provably robust via automated reasoning * Understanding and Interpreting Deep Networks * Probabilistic Programming | |||||
Voraussetzungen / Besonderes | While not a formal requirement, the course assumes familiarity with basics of machine learning (especially probability theory, linear algebra, gradient descent, and neural networks). These topics are usually covered in “Intro to ML” classes at most institutions (e.g., “Introduction to Machine Learning” at ETH). For solving assignments, some programming experience in Python is excepted. | |||||
263-3210-00L | Deep Learning ![]() | W | 5 KP | 2V + 1U + 1A | T. Hofmann | |
Kurzbeschreibung | Deep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations. | |||||
Lernziel | In recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology. | |||||
Voraussetzungen / Besonderes | This is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit. The participation in the course is subject to the following condition: - Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below: Advanced Machine Learning https://ml2.inf.ethz.ch/courses/aml/ Computational Intelligence Lab http://da.inf.ethz.ch/teaching/2019/CIL/ Introduction to Machine Learning https://las.inf.ethz.ch/teaching/introml-S19 Statistical Learning Theory http://ml2.inf.ethz.ch/courses/slt/ Computational Statistics https://stat.ethz.ch/lectures/ss19/comp-stats.php Probabilistic Artificial Intelligence https://las.inf.ethz.ch/teaching/pai-f18 | |||||
263-3850-00L | Informal Methods ![]() | W | 4 KP | 2G + 1A | D. Cock | |
Kurzbeschreibung | Formal methods are increasingly a key part of the methodological toolkit of systems programmers - those writing operating systems, databases, and distributed systems. This course is about how to apply concepts, techniques, and principles from formal methods to such software systems, and how to get into the habit of thinking formally about systems design even when writing low-level C code. | |||||
Lernziel | This course is about equipping students whose focus is systems with the insights and conceptual tools provided by formal methods, and therby enabling them to become better systems programmers. By the end of the course, students should be able to seamlessly integrate basic concepts form formal methods into how they conceive, design, implement, reason about, and debug computer systems. The goal is not to provide a comprehensive introduction to formal methods - this is well covered by other courses in the department. Instead, it is intended to provide students in computer systems (who may or may not have existing background knowledge of formal methods) with a basis for applying formal methods in their work. | |||||
Inhalt | This course does not assume prior knowledge of formal methods, and will start with a quick review of topics such static vs. dynamic reasoning, variants and invariants, program algebra and refinement, etc. However, it is strongly recommended that students have already taken one of the introductory formal methods course at ETH (or equivalents elsewhere) before taking this course - the emphasis is on reinforcing these concepts by applying them, not to teach them from scratch. Instead, the majority of the course will be about how to apply these techniques to actual, practical code in real systems. We will work from real systems code written both by students taking the course, and practical systems developed using formal techniques, in particular the verified seL4 microkernel will be a key case study. We will also focus on informal, pen-and-paper arguments for correctness of programs and systems rather than using theorem provers or automated verification tools; again these latter techniques are well covered in other courses (and recommended as a complement to this one). | |||||
263-4500-00L | Advanced Algorithms ![]() | W | 6 KP | 2V + 2U + 1A | M. Ghaffari, A. Krause | |
Kurzbeschreibung | This is an advanced course on the design and analysis of algorithms, covering a range of topics and techniques not studied in typical introductory courses on algorithms. | |||||
Lernziel | This course is intended to familiarize students with (some of) the main tools and techniques developed over the last 15-20 years in algorithm design, which are by now among the key ingredients used in developing efficient algorithms. | |||||
Inhalt | The lectures will cover a range of topics, including the following: graph sparsifications while preserving cuts or distances, various approximation algorithms techniques and concepts, metric embeddings and probabilistic tree embeddings, online algorithms, multiplicative weight updates, streaming algorithms, sketching algorithms. | |||||
Skript | https://people.inf.ethz.ch/gmohsen/AA19/ | |||||
Voraussetzungen / Besonderes | This course is designed for masters and doctoral students and it especially targets those interested in theoretical computer science, but it should also be accessible to last-year bachelor students. Sufficient comfort with both (A) Algorithm Design & Analysis and (B) Probability & Concentrations. E.g., having passed the course Algorithms, Probability, and Computing (APC) is highly recommended, though not required formally. If you are not sure whether you're ready for this class or not, please consult the instructor. |
Seite 4 von 6
Alle